Close Menu
IOupdate | IT News and SelfhostingIOupdate | IT News and Selfhosting
  • Home
  • News
  • Blog
  • Selfhosting
  • AI
  • Linux
  • Cyber Security
  • Gadgets
  • Gaming

Subscribe to Updates

Get the latest creative news from ioupdate about Tech trends, Gaming and Gadgets.

    What's Hot

    AI Agents Now Write Code in Parallel: OpenAI Introduces Codex, a Cloud-Based Coding Agent Inside ChatGPT

    May 16, 2025

    Linux Boot Process? Best Geeks Know It!

    May 16, 2025

    Microsoft’s Surface lineup reportedly losing another of its most interesting designs

    May 16, 2025
    Facebook X (Twitter) Instagram
    Facebook Mastodon Bluesky Reddit
    IOupdate | IT News and SelfhostingIOupdate | IT News and Selfhosting
    • Home
    • News
    • Blog
    • Selfhosting
    • AI
    • Linux
    • Cyber Security
    • Gadgets
    • Gaming
    IOupdate | IT News and SelfhostingIOupdate | IT News and Selfhosting
    Home»Artificial Intelligence»Novel AI model inspired by neural dynamics from the brain | MIT News
    Artificial Intelligence

    Novel AI model inspired by neural dynamics from the brain | MIT News

    AndyBy AndyMay 5, 2025No Comments3 Mins Read
    Novel AI model inspired by neural dynamics from the brain | MIT News



    Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed a novel artificial intelligence model inspired by neural oscillations in the brain, with the goal of significantly advancing how machine learning algorithms handle long sequences of data.

    AI often struggles with analyzing complex information that unfolds over long periods of time, such as climate trends, biological signals, or financial data. One new type of AI model, called “state-space models,” has been designed specifically to understand these sequential patterns more effectively. However, existing state-space models often face challenges — they can become unstable or require a significant amount of computational resources when processing long data sequences.

    To address these issues, CSAIL researchers T. Konstantin Rusch and Daniela Rus have developed what they call “linear oscillatory state-space models” (LinOSS), which leverage principles of forced harmonic oscillators — a concept deeply rooted in physics and observed in biological neural networks. This approach provides stable, expressive, and computationally efficient predictions without overly restrictive conditions on the model parameters.

    “Our goal was to capture the stability and efficiency seen in biological neural systems and translate these principles into a machine learning framework,” explains Rusch. “With LinOSS, we can now reliably learn long-range interactions, even in sequences spanning hundreds of thousands of data points or more.”

    The LinOSS model is unique in ensuring stable prediction by requiring far less restrictive design choices than previous methods. Moreover, the researchers rigorously proved the model’s universal approximation capability, meaning it can approximate any continuous, causal function relating input and output sequences.

    Empirical testing demonstrated that LinOSS consistently outperformed existing state-of-the-art models across various demanding sequence classification and forecasting tasks. Notably, LinOSS outperformed the widely-used Mamba model by nearly two times in tasks involving sequences of extreme length.

    Recognized for its significance, the research was selected for an oral presentation at ICLR 2025 — an honor awarded to only the top 1 percent of submissions. The MIT researchers anticipate that the LinOSS model could significantly impact any fields that would benefit from accurate and efficient long-horizon forecasting and classification, including health-care analytics, climate science, autonomous driving, and financial forecasting.

    “This work exemplifies how mathematical rigor can lead to performance breakthroughs and broad applications,” Rus says. “With LinOSS, we’re providing the scientific community with a powerful tool for understanding and predicting complex systems, bridging the gap between biological inspiration and computational innovation.”

    The team imagines that the emergence of a new paradigm like LinOSS will be of interest to machine learning practitioners to build upon. Looking ahead, the researchers plan to apply their model to an even wider range of different data modalities. Moreover, they suggest that LinOSS could provide valuable insights into neuroscience, potentially deepening our understanding of the brain itself.

    Their work was supported by the Swiss National Science Foundation, the Schmidt AI2050 program, and the U.S. Department of the Air Force Artificial Intelligence Accelerator.



    Source link

    0 Like this
    brain dynamics inspired MIT model neural News
    Share. Facebook LinkedIn Email Bluesky Reddit WhatsApp Threads Copy Link Twitter
    Previous ArticleIt’s a wrap! RSAC 2025 highlights – Week in security with Tony Anscombe
    Next Article 10 Things Organizations Should Know About AI Workforce Development

    Related Posts

    Artificial Intelligence

    AI Agents Now Write Code in Parallel: OpenAI Introduces Codex, a Cloud-Based Coding Agent Inside ChatGPT

    May 16, 2025
    Artificial Intelligence

    How to avoid hidden costs when scaling agentic AI

    May 16, 2025
    Artificial Intelligence

    F1 Score in Machine Learning: Formula, Precision and Recall

    May 16, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    AI Developers Look Beyond Chain-of-Thought Prompting

    May 9, 202515 Views

    6 Reasons Not to Use US Internet Services Under Trump Anymore – An EU Perspective

    April 21, 202512 Views

    Andy’s Tech

    April 19, 20259 Views
    Stay In Touch
    • Facebook
    • Mastodon
    • Bluesky
    • Reddit

    Subscribe to Updates

    Get the latest creative news from ioupdate about Tech trends, Gaming and Gadgets.

      About Us

      Welcome to IOupdate — your trusted source for the latest in IT news and self-hosting insights. At IOupdate, we are a dedicated team of technology enthusiasts committed to delivering timely and relevant information in the ever-evolving world of information technology. Our passion lies in exploring the realms of self-hosting, open-source solutions, and the broader IT landscape.

      Most Popular

      AI Developers Look Beyond Chain-of-Thought Prompting

      May 9, 202515 Views

      6 Reasons Not to Use US Internet Services Under Trump Anymore – An EU Perspective

      April 21, 202512 Views

      Subscribe to Updates

        Facebook Mastodon Bluesky Reddit
        • About Us
        • Contact Us
        • Disclaimer
        • Privacy Policy
        • Terms and Conditions
        © 2025 ioupdate. All Right Reserved.

        Type above and press Enter to search. Press Esc to cancel.